A review of neural network detection methods for breast cancer: review article

Authors

  • Homayoon Yektaei Department of Biomedical Engineering, Islamic Azad University, Tehran North Branch, Tehran, Iran.
  • Mohammad Manthouri Department of Electrical and Electronic Engineering, Control Group, Faculty of Engineering, Shahed University, Tehran, Iran.
Abstract:

Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other methods such as 3d mammography, ultrasound and magnetic resonance imaging are often suggested to obtain additional useful information. Recently, computer-aided diagnostic or intelligent diagnostic have been developed to assist radiologists to improve diagnostic accuracy. In general, a computer system consists of four steps: pre-processing, dividing areas of interest, extracting and selecting features, and finally classification. Nowadays, the use of imaging techniques in the identification of patterns for diagnosis and automatic determination of breast cancer by mammography and even digital pathology (which is one of the emerging trends in modern medicine) reduces human errors and speeds up the diagnosis. In this article, We reviewed recent findings and their disadvantages and benefits in the diagnosis of breast cancer by neural networks, especially the artificial neural network, which is widely used in the diagnosis of cancers and intelligent breast cancers. This literature review shows that hybrid algorithms have been better at improving classification and detection accuracy. Providing a convenient way to diagnose tumors in the breast by computer-assisted diagnosis systems will be of great help to the physicians. Much work has been done in recent years to diagnose breast cancer, and many advances have been made in improving and diagnosing breast cancer by computer. All methods have a significant error percentage and are different depending on the type of breast, but compared to other types of neural networks, convolution and combining methods with convo have better results. Another advantage of the convoluted network is the automatic extraction of desirable features. Today, the best percentages of accuracy in detecting benign or malignant cancerous mass are achieved by convolution.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using data mining techniques for predicting the survival rate of breast cancer patients: a review article

    This review was conducted between December 2018 and March 2019 at Isfahan University of Medical Sciences. A review of various studies revealed what data mining techniques to predict the probability of survival, what risk factors for these predictions, what criteria for evaluating data mining techniques, and finally what data sources for it have been used to predict the surv...

full text

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

Targeted cancer therapy: review article

Cancer is one of the most dangerous health problems of today modern societies which has an increasing rate especially in developing countries. There are many diverse ongoing treatment attempts trying to defeat cancer. Despite that, scientists have been unable to find a permanent cure for this disease. In many cases although there is a successful first response in patients, cancer cells are fina...

full text

Multi-electrode arrays technology for the non-invasive recording of neural signals: a review article

The recording of electrophysiological activities of brain neurons in the last half-century has been considered as one of the effective tools for the development of neuroscience. One of the techniques for recording the activity of nerve cells is the multi-electrode arrays (MEAs). Microelectrode arrays (MEAs) are usually employed to record electrical signals from electrogenic cells like neurons o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 78  issue 6

pages  344- 350

publication date 2020-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023